Entropy generation in condensation in the presence of high concentrations of noncondensable gases

نویسندگان

  • John H. Lienhard
  • Gregory P. Thiel
چکیده

The physical mechanisms of entropy generation in a condenser with high fractions of noncondensable gases are examined using scaling and boundary layer techniques, with the aim of defining a criterion for minimum entropy generation rate that is useful in engineering analyses. This process is particularly relevant in humidification-dehumidification desalination systems, where minimizing entropy generation per unit water produced is critical to maximizing system performance. The process is modeled by a consideration of the vapor/gas boundary layer alone, as it is the dominant thermal resistance and, consequently, the largest source of entropy production in many practical condensers with high fractions of noncondensable gases. Most previous studies of condensation have been restricted to a constant wall temperature, but it is shown here that for high concentrations of noncondensable gases, a varying wall temperature greatly reduces total entropy generation rate. Further, it is found that the diffusion of the condensing vapor through the vapor/noncondensable mixture boundary layer is the larger and often dominant mechanism of entropy production in such a condenser. As a result, when seeking to design a unit of desired heat transfer and condensation rates for minimum entropy generation, minimizing the variance in the driving force associated with diffusion yields a closer approximation to the minimum overall entropy generation rate than does equipartition of temperature difference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy Generation Minimization of a Heat and Mass Exchanger for Use in a Humidification - Dehumidification Desalination System

The physical mechanisms of entropy generation in a condenser with high fractions of noncondensable gases are examined using control volume, scaling, and boundary layer techniques, with the aim of defining a criterion for minimum entropy generation rate that is useful in engineering analyses. This process is particularly relevant in humidification-dehumidification desalination systems, where min...

متن کامل

Transient Entropy Generation Analysis During Wustite Pellet Reduction to Sponge Iron

The present study carefully examined entropy generation during wustite pellet reduction to sponge iron. The finite volume method was used to solve the governing equations. The grain model was used to simulate the reaction rate. The reactant gases including carbon monoxide and hydrogen were converted to water and carbon dioxide after wustite reduction. Entropy is generated by heat transfer, mass...

متن کامل

Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating

The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The eff...

متن کامل

Investigation of Entropy Generation Through the Operation of an Unlooped Pulsating Heat Pipe

In the present study, an unlooped pulating heat pipe has been considered with two liquid slugs and three neighboirng vapor plugs.The governing equations such as momentum, energy and mass equations are solved explicitly except the energy equation of liquid slugs.The aim of the present study is to calculate the entropy generation through the performance of a pulsating heat pipe. Additionally, the...

متن کامل

Ivestigation of Entropy Generation in 3-D Laminar Forced Convection Flow over a Backward Facing Step with Bleeding

A numerical investigation of entropy generation in laminar forced convection of gas flow over a backward facing step in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the three-dimensional Cartesian co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012